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INTRODUCTION
Today, as our world stands on the edge of the twenty-first century, we
prepare to take a giant leap towards the colonization of space with the
construction of space station Freedom. Assembling a large space structure, like
Freedom, in orbit is a technical and logistical triumph, but it is a short lived

victory. Getting the station in orbit is half the battle, and keeping it there is the

other. All large space structures in earth orbit are acted upon by the remnants of
our atmosphere and the earth’s gravity (although small at higher altitudes). This
results in drag slowing the structures down and causing them to lose altitude. If
no corrective action is taken to boost the structure to a higher orbit, it will reenter
the earth’s atmosphere. This exact scenario has already occurred once with the
space station Skylab [1].

it is obvious that for a large space structure to remain in orbit that some
method must be used to periodically boost it back to higher orbits. There are
different methods that can be employed. For instance an external ship, such as
the shuttle, could use its own maneuvering rockets to boost the station. Another
alternative is to have maneuvering rockets on the station itself which can be fired
to move to higher altitudes. It is expected that a large space structure acting
under the forces of maneuvering rockets (regardless of method used) will
experience a rigid translation in a direction opposite the force applied, vibrations
around its center of mass, as well as a physical deformation of its structure. The

goal of this thesis is to develop a mathematical model, using differential




equations, of a large space structure acting under the force of these
maneuvering rockets. This model could then be used to analyze the structural
responses of a large space structure generated by the firing of the maneuvering
rockets. For the purposes of this thesis only the second case, where the rockets
are part of the large space structure, will be considered.

The process that will be used to accomplish this is to take a model that is
used on earth and make necessary changes in assumptions, boundary
conditions, etc., to adapt it to space. Chapter one presents the mathematical
development of the model from an Euler beam mode! used on earth. Chapter
two shows the numerical analysis of the solutions of the mathematical model,
and discusses the responses of the model to the forces encountered. Chapter
three examines the vibrations, caused by the force of the maneuvering rockets,

to ensure that they are bounded. Finally chapter four presents conclusions

based upon the results of the previous chapters.




CHAPTER 1
MATHEMATICAL DEVELOPMENT OF THE MODEL

This chapter deals with the development of a mathematical model to represent
a large space structure. First, we will select a physical structure that will
represent a large space structure, then we will set about describing it
mathematically.

Before any mathematical equations can be developed we have to know what
it is we are attempting to model. Pictured below is a typical space station type

structure that we want to model.

Fig 1-1

Thus, our first step is to choose a physical model to represent a large space
structure like the one pictured above. Our main concerns about this choice are
1) does our physical model adequately represent a large space structure, and 2)
can a mathematical model be developed to describe this physical model. Taking
these concerns into account the first structure that comes to mind is that of a
simple beam (representing the space structure) floating in space, with forces

applied at the ends (representing the force of the maneuvering rockets) as seen

in the picture below.




Fig 1-2

On earth simple beams are used extensively in the theory of elasticity and
structural dynamics and react to forces similar to what we are trying to model .
Given the extensive work done with beams on earth we have a high degree of
confidence that we can accurately mathematically model! this structure in space.

Now that a physical model has been chosen we can begin the process of
mathematically describing it. The first step in this process is identifying exactly
what we are trying to do mathematically. As mentioned earlier we want to model
a maneuvering rocket type force acting on a large space structure (represented
by a simple beam with a point force applied at each end), and the response of
the beam to this force. It is reasonable to expect the beam to experience, 1) a
rigid translation of the beam in the positive w direction, 2) vibrations around the
center of mass of the beam, 3) as well as a deformation of the beam in response
to the force caused by a maneuvering rocket burn (see Fig 1-3).

Fig 1-3

w T Rigid body translation in positive w direction

Deformation of the beam

These three responses will be the main areas that our mathematical model must

address.




Now that we have a chosen a physical structure, and identified the goals of
our mathematical model we can start doing some math. We begin by looking at
existing models of beams acting under forces. Immediately we turn to the theory
of elasticity and the model of a simply supported beam of length, L, acting under
a vertical load ¢(x), as shown in Fig 1-4.

Fig 1-4

The dotted line running through the middle of the beam is known as the center
line. This center line becomes deformed under the action of the vertical load
g(x), and is then referred to as the elastic curve of the beam [2]. This center
line/elastic curve will become important as we begin discussing the assumptions
made about this beam. The differential equation representing the equilibrium of
this beam is derived from the Bernoulli-Euler law which states that the curvature
K of the elastic curve is proportional to the bending moment M [2] and is given

by,

(1.1) K=Ei

where E is the Young’s modulus of elasticity and I is the area moment of inertia.
Using equation (1.1) the fourth-order partial differential equilibrium equation is

derived to be,




(1.2) EW™ = g(x)

where w(x) is the equation of the elastic curve of the beam as a function of the
distance, x, along the center of the beam from the left endpoint (represents the
deflection of the beam), and g(x) is the force acting on the beam [3]. This model
is based on several assumptions the greatest of which comes from Von Karman.
This assumption states that any vector drawn to a point off the centerline, that is
normal to the centerline before deformation will remain normal to the centerline
after deformation has occurred, and the distance to this point will be preserved
[4]. The other assumption is that the ends of this beam are fixed and hinged,
which leads to the following boundary conditions [3],

(1.3.a) w(0) =w(L) =0

(1.8.b) w'(0)=w"(L)=0

We also expect vibrations around the equilibrium solution of equation 1.2 to
occur after a force is applied. Therefore using D'Alembert’s principle [4] we add
in an acceleration term into the equilibrium equation giving us,

(1.4.a) Elw,_.. +pw, =q(x)

where wis now a function of distance, x, and time, ¢, and w, is the acceleration of
the beam with respect to time, and, p, is the density of the beam. Dividing both

sides by p gives us,

(1.4.b) Gw,,. +w, = q(x)

EI ~
where G =—, and q(x)=i(-x—).
p p




Equation 1.4 is correct for a beam on earth, but since we want to examine a
beam floating free in space, modifications must be made to this equation. Since
the beam is floating free the ends are no longer fixed, as on earth, and our
boundary conditions change. The third partial derivative of w with respect to x,
which is the shear term, will be 0 at the endpoints, and we cannot assume
w(0,t) = w(L,t) =0. Therefore, our new boundary conditions are,

(1.5.a) w, (0,0)=w_(L,t)=0

(1.5.b) W 0,0)=w_ (Lt)=0

The status of the endpoints not only affects our boundary conditions, but our
solution as well. On earth with fixed endpoints we would expect a solution to 1.4
to consist of vibrations around the equilibrium solution of the beam and a
deformation of the beam. Now with endpoints not fixed the solution will consist
of a rigid body translation of the center of mass of the beam, vibrations around
the center of mass, and a deformation of the beam. In chapter 2 we will be
looking for a solution to 1.4 of the form,

(1.6) w(x,t) = u(x,t) +v(t)

where v(z) represents the rigid body translation of the beam. According to

Newton’s law of motion, F=ma, the acceleration, v"(?), is given by

(1.7.a) my'"(8) = [ q(x, P)dx

L
where m = pL (for our case), and jq(x,t)dxis the force acting on the beam
0




integrated over the length of the beam, and v(y) is of the form a? + bt +c (where

a,b,c are constants). Dividing both sides of 1.7.a by m = pL we obtain
1¢-
(1.7.b) Vit =T ! q(x,t)dx

~ ,t
where g(x,t) = g% If we assume that v(0)= 0, and v'(0)= 0, then v()= ar2.

Substituting 1.6 into 1.4 we get the following equation which mathematically

models a beam in space,
- 1%-
(1.8) ty + Gl =q(0) =7 [ g0 = £ (0
0

where on the right side we are subtracting out our rigid body translation so that
we are left with just deformation and vibrations. In effect we have changed to a
new coordinate system now centered on the center of mass of the beam. We
expect the general solution of 1.8 to consist of an equilibrium solution as well as
some function representing the vibrations around this equilibrium solution. In
general this solution, u(x,?), is given by,

(1.9) u(x,t) = uy(x) +z(x,t)

where u(x) is the equilibrium solution, and z(x,#) is a function describing the

vibrations around uo(x). Substituting 1.9 into 1.8 we get,

(1.10) 2, +Gz, =0
and,
(1.11) Gu'(x) = f(x)




Ultimately we want to examine z(x,#) to ensure that the vibrations around this
equilibrium solution are bounded.

Now that we have developed a mathematical model, we must approximate
the solutions. In the next chapter numerical calculations and analysis used to

approximate the general solution, u(x,?), to our model are presented.
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CHAPTER 2
NUMERICAL ANALYSIS OF SOLUTIONS

As already stated the general solution to our model, given by equation 1.8,
consists of two parts. The equilibrium solution, ue(x), and the vibrations around
this equilibrium solution, z(x,7). In this chapter we will first examine the
equilibrium solution, uy(x), then z(x,?).

We want to find an equilibrium solution, ue(x), to equation 1.9. which
represents the deflection of the beam caused by the force applied at the ends. It
is useful at this point to recall that in equation 1.8 the rigid body motion was
subtracted out and will not be considered in these calculations. Recall, from
chapter 1 that we are representing our space station type structure as a beam
with a point force, f,(x), applied upwards at each end of the beam(representing
the force of maneuvering rockets) (see Fig 2-1).

Fig 2-1 Beam in Space Model

e v em Em Em e e Er Ew Em e e Ew B G e v mm o e

For the purposes of this thesis we specify the length of our beam to be L=1. We
choose as our f,(x) a linear force acting over an interval of length € > 0 near each

endpoint (Fig 2-2).
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Fig 2-2 Force Acting Over An Interval

0.84

0.6}

ool |

We then constructed the piecewise function below to represent f,(x), such that it

09-10x 0<x<0l
2.1) £,(x)=1-01 01<x<09
~91+10x 09<x<10

was continuous and its fourth derivative existed everywhere. Substituting in 2.1

into 1.11 we get,
(2.3) Gul? (x) = f,(x)

the equation that we will solve for ue(x). For the purposes of our analysis we will
El \
assume the constant, G = ? =1. Using the Maple V, computer algebra system,

with the stated boundary conditions, equation 2.3 was integrated four times (with
respect to x) to find ue(x). The numerical and graphical results from these

integrations are listed below:




(2.4)

r

0 x=0

0.9x —5x* 0<x<01
u, =4-01x+005  01<x<09
-91x+5x*+41 09<x<10

. 0 x=1
Fig 2'3 uxxx
0.0 fjf\\"“
AN
0.02-/ \\\\
N,
N
0 02 0.4 ;x.eia 08 ?
.0.02] \.\ /
N
.0.04 '\f’j
0 x=0
092 35 0<x<0l1
> X 3x <x<0.
-01 ,
< Tx +0.05x-0.00167 01<x<09
-91 ., 5,
-2—x +§x +41x-12167 09<x<10

0 x=1
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(2.6)

ux

= <

Fig 2"4 u_x
0.01 / N
2/ \\
0.004 z" AN
i Yy
; kY
0.00§ F4 '\s
f 1
/ \
o004 kY
/ y
%
0.003 / Y
/ \
3 5
0 02 04 068 08 1

)

09 v S 0.00335890
6 X 12)6 A

-01 0.05

—6—)63 +T x* —0.00167x — 0.0033317
*_ﬂ 3+—§- 4+-4~'1 2 -12167x+ 0270085
6 X 12x 2 X . X ..

0

Fig 2-5 us

0.003 e

0.003 /

0.00 4
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(2.7)
[0 x=0
09 , 5
= -=5¥ -0 <x<01
24x 60x 0.00335890x 0<x

_]=01, 005 , 000167
W=\ F T X 2
—91 , 5 . 41, 12167

Yx +6—0x +—6—x

0 x=1

x% —0.0033317x — 0.00000084 01<x<09

x* +0.270085x —0.049235 09<x<10

S

Equation 2.7 satisfies our boundary conditions and is an adequate equilibrium
solution, uo(x). Now that we have an equilibrium solution we turn our attention
toward solving for the vibration function, z(x,?).

The function z(x,7) describing the vibrations of the beam will have a solution of

the form,

(2.8) z(x,t) = in (0T, (2)

j=1
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It is known that X;(x) and T(¢) have the following forms,

(2.9) X ;(x) = A; sinh(@;x) + B; cosh(w;x) + C; sin(w;x) + D; cos(®,;X)

(2.10) T.(t) = E, sin(@;t) + F, cos(w,)

where A;, B;, Cj, D;, E;, and F; are constant coefficients and thew; 's are the
eigenvalues of the functions. There will be an infinite number of eigenvalues
that will satisfy these functions for our boundary conditions. We will only find the
five of eigenvalues for the purpose of this thesis. Using our boundary conditions
from Chapter 1,

(1.5.a) w, (0,6) =w_(L,t) =0

(1.5.b) w,. (0,6) =w,_(L,1)=0

and equation 2.9 }we derive the following four equations,

(2.11.a) X "(0) = B,0; - Dw;

(2.11.b) X "(L) = A0} sinh(w; L) +B;w} cosh(w;L) —C;w} sin(w;L) —D ,»} cos(w; L)
(2.11.0) X”(0) = Aw’ - Co®

(2.11.d) X (L) = A’ cosh(aL) + Bw® sinh(wL) — Cw® cos(wL) + D@® sin(wL)

which we will use to determine the various values of ;. In order to find ; we
will put equations 2.11.a-d into a matrix, M, find the determinant of M, and then

solve the equation Det(M)=0. The Maple V computer algebra system was used

to carry out these operations, the results are below:
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0 w? 0 -’
@® sinh(al) @*cosh(wl) —-w’sin(wl) - cos(al)
B o’ 0 -0’ 0

@’ cosh(wl) @’ sinh(wL) -’ cos(wl) -’ sin(wl)
Det(M) = —20" sinh(aL) sin(wL) — 20" cos(aL)? + 20" cosh(wL) cos(al.)
Setting this determinant equal to zero the first five values of o; were found and
are listed below,

(4730040745
7853204624
(2.12) o = 410.99560784
1413716549
117.27875966

Now we will demonstrate how these specific values of ®; can be used to find

the coefficients A;,B;, C;, and D;. Using numerical approximation techniques
values for the coefficients A;, B;, C;, and D; were found for the first five values

ofa)j. The table below lists these results:

TABLE 2-1
Q; COEFFICIENT MATRIX[A, B, C, D]
4.730040745 [1, -1.017809412, 1.000000005, -1.017809507]
7.853204624 [1,-.9992232934, 9999999613, -.9992216947]
10.99560784 [1, -1.000033531, .9999951588, -.9994589301]
14.13716549 [1, -.9999985491, 1.000003425, -1.000704009]
17.27875966 [1, -1.000000066, 1.000208350, -1.061150339]

Now we know that velocity will equal o at t=0. Taking the first derivative of

equation 2.10 we get,
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(2.13) T;(t) = E wcos(w;t) — Fo, sin(,t)

Setting equation 2.13 equal to 0 and evaluating at t=0 we get,

(2.14) T,(t)=E, =0

and therefore E=0. We could also find F; using numerical approximation
techniques and initial conditions. However, for the purposes of this thesis we do

not need to calculate it.
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CHAPTER 3
BOUNDEDNESS OF VIBRATION

Developing a mathematical model to analyze how a large space structure
reacts to certain forces is important. It allows us to find the specific responses
caused by certain forces. Ultimately however we are more concerned with
whether there is a limit to these responses. Specifically, we are concerned with
the vibrations of a large space structure that are caused by maneuvering rocket
type forces. If these vibrations have no limit, no maximum value, they will
continue to increase without bound. Eventually a structural failure will occur
resulting in a loss of equipment and human life. We have examples on earth of
how catastrophic unbounded vibrations can be. The Tacoma Narrows bridge
disintegrated as a result of unbounded vibrations caused by the wind [5]. It is
obvious then that proving the vibrations of a large space structure to be bounded
is of the utmost importance. In this chapter we will show that the vibrations are
in fact bounded.

In order to prove boundedness we will use what is known as the Energy
Method [6]. We start by multiplying equation 1.10 by z, and integrating with

respect to x, to get,

L L
(3.1) jznz,dx+jzmz,dx=0
0

0

recall that the constant G=1. Using integration by parts twice we obtain,

L L
(3.2) J.di,-é-(z,)zdx+z, zm|§ —zx,zxxlg +Jzuzmdx=0
0 ]




19

We know from boundary conditions 1.5a, and 1.5b that
Zu(0,8)=Zx(L,)=2:x(0,t)=2:(L,£)=0 Which causes the second and third terms of 3.2

to go to 0. This leaves us with,
L L

(3.3) [£4@) dx+ [ 442,02 =0
0 0

Combining these integrals we get,

(3.4) 24z + @) =0
such that,
(3.5) [l + @) x=H

where H is a constant determined by the initial state of the beam.
Now with equation 3.5 as our starting point we will use inequalities to prove

that z(x,?) is bounded. We know that equation 3.5 is true thus,

(3.6) lz,|$J for every (x,t)
and,
(3.7) || <7 for every (x,1)

where J is some arbitrary constant. Now the following must hold as well,

Xy

2,(x0)| = || 2, (x)el| <

L

2

L
J<—J

(3.8) >

L
xo—?

, . . L.
where x, is some point on the elastic curve of our beam and 2 is of course the

center of the beam.
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Using 3.8 we then know,

X,

ngx (x)dx| <

X

|L L?
(3.9) l2(xy)| = x5S T

Therefore, z(x,t) is bounded.
The above result is good news. It tells us that the vibrations caused by our

“maneuvering rocket” type forces will not increase without limit until the structure

fails.
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CHAPTER 4
CONCLUSIONS

It is clear that mathematical modeling is an invaluable tool in the analysis of
space structures. It allows us to examine various scenarios on earth before any
space ship ever leaves the ground. The benefits to be gained fromﬁ using
mathematical modeling are two-fold. First, it is much cheaper than actual testing
of hardware. Mathematical modeling can be used repeatedly to work out
problems and identify solutions. This allows scientists to focus and test only the
best solutions, thus saving money and resources. The other main benefit is that
mathematical modeling can be used when it would be unsafe or unfeasible to
test an actual system.

The purpose of this thesis was to develop a mathematical model that could
be used to analyze the responses of a large space station type structure to the
forces caused by the routine use of maneuvering rockets. Using differential
equations a model, given by equation 1.8, was developed. A few solutions were
approximated and coefficients found. Analysis then showed the vibrations

caused by the maneuvering rockets were bounded. The results of this thesis
can now be used in concert to examine specific various large space structure
scenarios(i.e. different materials, different sizes, and masses). Below is a list of

different materials used in the construction of space structures [7],




Table 4-1
MATERIAL DENSITY, p
(Kg/m®)

Aluminum Alioy

Sheet (2024-T36) 2770

Sheet (7075-T6) 2800
Beryllium Extrusion 1850
Magnesium Sheet 1770
Steel PH15-7 (RH1050) 7670

22

Young’s Modulus, E
(N/mm?)

72,000
71,000
290,000
45,000
200,000

Data like this can be input into the model to analyze the response of specific

materials to the forces caused by maneuvering rockets. Additionally, this model

can be modified to examine different forces as well. For instance the case of the

shuttle being used to boost a large space structure to higher orbit can be

investigated by modifying this model.

In conclusion, as our government experiences shrinking research and

development budgets it is clear that mathematical modeling will become

increasingly important. The model developed in this thesis is only the beginning

of what can be accomplished to ensure that mankind’s colonization of space is

safe and successful.
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